
Crystalline and quasi-crystalline phases of the Al-Si-Mn system: a comparison of the 57Fe

electric-field-gradient properties

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 6413

(http://iopscience.iop.org/0953-8984/2/30/007)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 22:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/30
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 2 (1990) 6413-6431. Printed in the UK 

Crystalline and quasi-crystalline phases of the Al-Si-Mn 
system: a comparison of the 57Fe electric-field-gradient 
properties 

R A Brandts G Le Caert and J M Duboist 
t IFF der KFA Jiilich, D-5170 Jiilich, Federal Republic of Germany 

Ecole des Mines, F-54042 Nancy Cedex, France 
Laboratoire de Science et G6nie des Materiaux Metalliques, (CNRS UA 159), 

Received 4 December 1989, in h a l  form 23 March 1990 

Abstract. We present here the determination of the distribution P(q)  of the electric 
field gradient in Fe-doped Al-Si-Mn icosahedral and decagognal quasi-crystals and 
in the related crystalline phases, using in-field Massbauer effect spectroscopy. The 
distribution P ( q )  for the quasi-crystalline compounds shows a bimodal, nearly sym- 
metric form with P(0)  N 0 and equal averages over positive and negative q = ieQV,,, 
- ( q - )  2: ( q + )  and equal standard deviations: 0- N o+. The results for the majority 
sign of the distribution P ( q )  will be compared to the results for the cubic, hexagonal 
and orthorhombic compounds. The results show that there are similarities in the 
local order between the icosahedral quasi-crystalline phase and the hexagonal phase. 
No evidence is found for a two-site model, which has recently been proposed by other 
authors. 

1. Introduction 

The discovery that sharp diffraction peaks with icosahedral (i-) symmetry could be 
observed in aluminium-manganese alloys with approximate composition Al,,Mn,, [l] 
has provoked much work devoted to  the determination of the structure of these new 
phases. Local techniques such as extended x-ray absorption fine structure (EXAFS) 
[2-51, nuclear magnetic resonance (NMR) [6,7] and Mossbauer effect (ME) spectroscopy 
[8-111 have attracted some attention. From NMR the main findings are that  these 
quasi-crystalline (QC) alloys show a distribution of electric field gradients (EFG) and 
asymmetry parameters 77 a t  the A1 site. In addition, it was found that most but not all 
the Mn atoms carry a magnetic moment (with about 15% remaining magnetic) 17,121. 
At low temperatures, these Mn moments order a t  a spin-glass transition [13,14]. 

The early binary alloys Als6Mn,, also contained noticeable amounts of FCC AlMn 
solid solution. Systematic investigations have shown that a single QC phase forms in 
ternary Al-Si-Mn [15]. Formation of the icosahedral quasi-crystal (i-QC) in Al-Si-Mn 
occurs however only within a very narrow concentration range [15,16]: 20-23 at.% Mn 
and 4-6 at .% Si. For smaller Si contents, the A1,Mn decagonal (T-) QC phase [17] grows 
a t  the expense of the icosahedral QC. In addition, crystalline phases are observed a t  
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the limits of the i-QC domain, namely hexagonal P-Al,,,-,Si,Mn, [18] in the vicinity 
of 4-8 at.% Si and 23 at.% Mn, and the cubic a-Al,,-,Si,Mn, [19,20] at higher 
Si concentrations. Recently Tibballs el a1 [21] have reviewed the question of the 
solubility of silicon in the cubic and hexagonal phases. The orthorhombic phase o- 
A1,Mn [22] is stable without silicon substitution. 

Addition of silicon significantly reduces the disorder of the icosahedral network and 
has a drastic effect on both the stability and the physical properties of the i-QC. Both 
x-ray [23] and electron [24] diffraction studies support this conclusion. The linewidth 
of the pseudo-Bragg peaks is smaller in the ternary Al-Si-Mn i-QC than in the binary 
A1-Mn i-QC [25], and this implies a longer coherence length associated with icosa- 
hedral order in the ternary. However, both neutron diffraction [26] and electron mi- 
croscopy [27] demonstrate that disorder has not completely vanished in i-Al,,Si,Mn,, , 
but shows instead that the silicon induces systematic spot displacements in the five- 
fold diffraction patterns [26]. Magnetism is the physical property most affected by the 
presence of silicon which changes the type of spin-glass behaviour at low temperatures 
compared with that of binary Al-Mn i-QC [28]. Ferromagnetic transitions have been 
reported for the Al-Si-Mn amorphous alloys [13] and in crystallised alloys [29], both 
for silicon contents of about 30 at.%. 

These results suggest that a direct comparison of the local atomic order present 
in these different quasi-crystalline and crystalline phases is highly desirable. In this 
paper we report on studies of in-field Mossbauer spectroscopy of Fe-doped icosahedral 
and decagonal QC as well as the cubic (a-) ,  hexagonal (p-) and orthorhombic (o-) Al- 
Si-Mn alloys. The early Mossbauer work consisted of studies of Fe-doped Al-Si-Mn 
i-QC as measured at  room temperature and in zero magnetic field. Such spectra show 
broadened quadrupole split doublets. Swartzendruber et a1 [8] have evaluated such 
spectra assuming a priori that there are two sites present with relative concentrations 
given by the golden mean r = (1 + &)/2. The similar QC system i-AlMCr14-,Fe, 
(with 3 5 2 5 14) has recently been reported on by Dunlap e t  a1 [30] who also used 
a two-site fit. They showed that the relative areas of the two doublets depend on the 
iron concentration and concluded from this fact that this shows evidence for preferred 
site occupancy of Fe. However, both we [31] and others [11,32] have shown that 
the zero-field spectra of quasi-crystalline phases are not sufficiently resolved to  detect 
any possible preferred occupancy. This lack of sensitivity is due to  the presence of 
significant disorder. The decagonal phase has been studied by Mossbauer spectroscopy 
both in zero [33,34] and in external field [35]. More information can be obtained from 
in-field 57Fe ME spectra, which we present below since in this case, the positive and 
negative EFG terms can be distinguished. It is necessary to treat the ME spectra of the 
icosahedral and decagonal QC phases as composed of a distribution of EFG effects, and 
the results of such a treatment do not confirm the two-site models. In somewhat more 
detailed work, Eibschutz el a1 [9] analyzed the zero-field spectra in terms of the Czjzek 
shell model distribution [36]. They concluded that the local environments of Mn (and 
Fe) in the amorphous and quasi-crystalline alloys are similar. A further problem is 
that in the case of Al-based alloys, the presence of short ranged chemical order is not 
necessarily detected in the presence of sufficient medium and long range disorder [37]. 
In addition, Scholte el al  [38] have also shown that in the case of amorphous alloys, 
changes detected in the EFG distribution can be of electronic and not of structural 
origin. 

Thus the interpretation of EFG distributions is sometimes not very straightforward. 
We need a reference system for the EFG distribution in the case of complete disorder, 
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and an indication of the changes in this model distribution with growing characteristic 
local order. In a pioneering work, Czjzek et a1 [36] made numerical simulations of 
the EFG joint distribution P(q,  77) for randomly filled atomic shells in a point charge 
calculation. It was shown by Le CGr  et a1 [31,39] that in fact this distribution results 
from very general statistical considerations. It is only necessary to  consider that (i) the 
solid is macroscopically isotropic in the statistical sense and (ii) the elements of the 
EFG tensor K j  are distributed according to a multivariate Gaussian law. Le Caer et 
a /  [31] have called this the Gaussian isotropic model (GIM); this model is reviewed in 
the appendix. The resulting joint distribution function P(q,  77) is written as: 

with q = ieQV,,. Here V,, and the asymmetry parameter 77 are defined in the used 
way, with 

and where V,, + Vyy + V,, = 0 holds for the principal components of the EFG tensor. 
Please note that in Le Caer et a1 [31] there was  an error in the definition of the 
constant a = 5/(2(S2)) = 1/(2u2). In equation 10 of that work, a = 1/(3g2) was used 
but not indicated. From P ( q ,  q)  we can calculate the two marginal distributions 

Q(q) = J’ P(q,  v) dq 
0 

R(q) = J’” P(P, 17) dq. 
--oo 

These two are given in figure 1. We see that there is zero probabilty of finding q = 0 
(cubic or higher symmetry) or 7 = 0 (cylindrical symmetry). Q(q) is bimodal with 
symmetric parts for p < 0 and q > 0. Since 57Fe ME spectra are relatively insensitive 
to small changes in 7, it is sufficient to take an average value ( q )  N 0.6, as has been 
shown by Le C&r et a1 [40]. The modulus AE,  E A of the zero-trace EFG tensor can 
be written as 

where the factor $eQ is for units (where Q is the nuclear quadrupole moment and q 
is defined above). The distribution of A can be written as 

The marginal distribution Q(q) can be written as 
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q (a rb i t ra ry  units1 

(a rb i t ra ry  units1 

Figure 1. Marginal distributions ( a )  Q ( q )  and ( b )  R(q) from the Czjzek shell model 
with 0 = 0. 

The effect of short-range correlations has been studied both by Czjzek et  al [36] 
and by Le C G r  et  a1 [40]. Any changes in the distribution function due to  such 
correlations should be most pronounced for the first atomic shell. Czjzek et  a1 made 
numerical simulations of the effect of the excluded volume due to  finite atomic size 
within one atomic shell. They find that the simulations can be best represented by 
an additional cubic term in P ( p ,  17) of 1 + Pp3(l - q2) /a3 .  The factor ,B represents the 
excluded volume effect, and this results in a distribution that is asymmetrical with 
respect to  positive and negative EFG. The area of the positive part of the distribution 

is given by 

P ,  = ; + J:P 

for /PI 5 0.05. This means that the sign of P is the sign of the dominating EFG in the 
distribution over q. 

In a different approach, Le Caer et  a1 [31] have studied the problem of how the 
spectral properties of a fixed Hamiltonian Yo are perturbed by the addition of a 
random interaction AV,. This YG (belonging to  the Gaussian orthogonal ensemble) 
can dominate over V ,  when the norm of AV, is larger than the norm of V, .  This 
approach was inspired by a similar method used in nuclear physics [41]. There are 
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also certain similarities to  the spin-glass problem when we consider the transition from 
spin glass (domination by AV,) to ferromagnetic order (domination by V,) [42]. Le 
Caer et a1 find a progressive change in the distribution towards a more narrow form 
so that the ratio (A)/u, increases from the lower limiting value of 3.094 given by the 
GIM, where (A) is the average of A over P ( A )  and U, is the standard deviation of A. 

Recently Levi Yeyati e t  a1 [43] have calculated EFG distributions numerically for 
the Zr sites in amorphous Zr70Cu30 alloys and compared these with the calculated EFG 
in crystalline Zr2Cu. They find very similar marginal distributions Q(q)  and R(q) as 
in the shell model with non-zero p, and find (Q) N 0.6 as well. The sign of p agrees 
with the sign of 5, found for the crystalline compound in a similar calculation. 

In the case of 57Fe ME spectroscopy, it is necessary to study spectra taken in an ex- 
ternal magnetic field in order to separate positive and negative EFG terms. Recently 
we have published first results [31] showing that the dominant EFG sign in the Fe- 
doped Al-Si-Mn icosahedral quasi-crystal and the sign of the EFG in the hexagonal 
crystalline compound are both negative and have similar magnitudes. In this work 
the cubic phase was studied as well, but the sign of the EFG at the two Mn (Fe) sites 
was not determined. In addition, the results for the zero-field spectrum of this sample 
were ambiguous and two different solutions were possible. The cubic and hexagonal 
phases are composed either of stacking sequences of Mackay icosahedra [44-461, or 
of fragments of such polyhedra. These structures have often been used as the first 
approximation to the quasiperiodic structures of Al-Si-Mn i-QC. Eibschiitz el a1 [lo] 
have also studied in-field ME spectra of Fe-substituted Al-Si-Mn i-QC without obtain- 
ing the sign of the dominating EFG or the distribution P(q) .  They have concluded 
that Fe substitutes only in non-magnetic Mn sites from the fact that the internal and 
external magnetic fields are the same. We have studied the magnetic properties of 
the Fe-substituted hexagonal phase and have shown that,  even in this case, where the 
magnetic order is due to  the presence of Fe, the internal and external magnetic fields 
are equal for in-field spectra [47] due to the fact that the magnetic moments are small, 
and in an antiferromagnetic or spin-glass state. It is thus questionable to reach such 
conclusions for the Fe substitution on the basis of even in-field spectra. We want to 
stress that these &C spectra have been evaluated using the exact (static) Hamiltonian 
averaged over an isotropic EFG texture and including the effect of the distribution 
over Vzz.  

2. Experimental details 

Melt-spun alloys have been prepared of icosahedral quasi-crystalline phases, which 
we shall denote as i-Al,,,Si,(MnFe), i-A14,8Sic(CrFe) and i-Al,(MnFe), and the 
decagonal QC phase T-A14(MnFe). In addition, melt-spun samples of the cubic 
cu-A1,,Si3(MnFe), , hexagonal p-Al9Si(MnFe), and orthorhombic o-Al,(MnFe) crys- 
talline phases have been prepared as well. In this notation, (MnFe) stands for 
(Mno,72Feo,za), and (CrFe) stands for (Cro,5Fec,5). The silicon addition 6 N 0.06 
stabilises the i-QC phases. Table 1 shows the nominai compositions including the sili- 
con content. All samples have been characterised by x-ray diffraction [48,49], and the 
QC [48,49] and hexagonal phases [47] have been studied by neutron diffraction. Here 
we present results on the distributions P ( A )  from the zerc-field and P ( q )  from in-field 
ME spectra calculated using a histogram method. 

The ME spectra were taken using a 57Co-Rh source at  room temperature (for the 
cubic phase, the source for the in-field spectrum was  at  4.2 K). The in-field spectra have 
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Table 1. Nominal compositions of the samples and notation used in the text. 

Notation Nominal composition 

been treated using the exact Hamiltonian for mixed hyperfine magnetic and electric 
quadrupole interactions. The algorithm used to calculate subspectra depended upon 
the assumed relationship between the direction of the hyperfine magnetic field Bhf 
and the direction of the EFG principal axes. For the case of a fixed angle between 
Bhf and the EFG axes, the algorithm of Ruebenbauer and Birchall [50] was used. In 
the case of no correlation between the direction of Bhf and the EFG axes (isotropic 
EFG texture), the algorithm of Blaes et a1 [51] was used. The EFG distribution P(q) 
has been calculated from the spectra for the &C using a modified Hesse-Riibartsch 
formalism [52-541 which accepts only positive P ( q )  and iterates in a non-linear manner 
for all parameters except the distribution P ( q ) .  This includes the isomer shift I ,  and 
the standard deviation of the distribution in I,, denoted as uI. For the QC, only the 
algorithm of Blaes et  a1 is appropriate. In order to conserve computation time, the 
theoretical subspectra are calculated at fixed intervals of q,  and for a fixed hyperfine 
magnetic field Bhf and asymmetry parameter r]  = 0.6. These are stored in a numerical 
file., and the fit program uses this file to calculate P ( q ) .  Spline coefficients are used 
to interpolate such fixed theoretical spectra for the actual isomer shift. In order to 
check the objectivity of these distributions, we have also used a new maximum entropy 
method as well [55], and the results are very similar. In the following, the isomer shift 
is reported as referenced to that of BCC Fe at room temperature. The zero velocity of 
the spectra shown is that of the source. 

3. Results 

We first discuss the results for the icosahedral and decagonal QC phases. The spectra at  
4.2 K in zero and in external field (5 T, perpendicular to the y-ray direction) are shown 
in figure 2 for i-Al,,,Si,(MnFe), figure 3 for i-Al4$iC(CrFe), figure 4 for i-A14(MnFe) 
and figure 5 for T-Al,(MnFe). The theoretical fits have been obtained by the histogram 
distribution of AEQ E A (zero-field spectra) and q (with r]  = 0.6; in-field spectra). 
We have assumed as well a (small) isomer shift distribution independent of the EFG 
by including the standard deviation parameter uI. The slight asymmetry seen in the 
zero-field spectrum of T-Al,(MnFe), figure 5 (upper), was compensated for by using 
a small linear correlation between isomer shift and quadrupole splitting. The in-field 
spectrum was much easier to fit, as seen from figure 5 (lower). The distributions P(A)  
and P(q)  are shown to the right of the respective spectra. The distributions P ( q )  are 
all bimodal in character but with dominant negative (i-QC) or positive (i-QC) sign. It 
should be noted that the dominant negative sign for the i-QC samples is well outside 
experimental errors, but that this is not the case for the positive sign found for the 
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T-QC sample. The distributions for the two i-QC samples show evidence for a small 
contribution near q = 0. This will be discussed in conjunction with the presence of 
small amounts of FCC A1 in these samples, containing some dissolved Fe. 

c 
0 
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I 
e c 
W 

+ 0 

W CL 

t - 

' I  r i i i i i i i  

-2 -1 0 1 2 

V e l o c i t y  i m m  s-lj 

Figure 2. ( a )  ME spectra and (b) resulting distributions for the i-QC sample 
i-A15,6Sie(MnFe) at  T = 4.2 K: (upper) zero-field and (lower) in-field; E m  = 5 T, 
perpendicular to 7-ray. The distributions P ( A )  from the upper, and P(p) from the 
lower spectrum are shown to the right. 

c '-"1 CL 

as( "  s-lj 

- 2  - 1  0 1 2 

V e l o c i t y  (mm S - ' I  

Figure 3. ( a )  ME spectra and ( b )  resulting distributions for the i-QC sample 
i-Alr.eSi,(CrFe) a t  T = 4.2 I<: (upper) zero-field and (lower) in-field, Bext = 5 
T perpendicular to 7-ray. The distributions P ( A )  from the upper and P(q)  from the 
lower spectrum are shown to the right. 

Results for the average isomer shift ( I s ) ,  standard derivation aI, as well as averages 
over the zero-field distribution P(A) are shown in table 2. Table 3 presents results 
for the in-field spectra. There p+ is the average over the positive, and p -  over the 
negative part of P(q) .  In the same way, the averages (q+) and ( q - )  and standard 
deviations a+ and a- can be defined from the integral first and second moments over 
P(q)  for q 2 0 or q 5 0 respectively. 
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Figure 4. (a)  ME spectra and (b)  resulting distributions for the i-QC sample 
i-Alr(MnFe) at  T = 4.2 K: (upper) zero-field and (lower) in-field, Bext = 5 T per- 
pendicular to y-ray. The distributions P ( A )  from the upper and P ( q )  from the lower 
spectrum are shown to the right. 
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Figure 5. (a) ME spectra and (b)  resulting distributions for the T-QC sample 
T-A14(MnFe) at T = 4.2 K: (upper) zero-field and (lower) in-field, Bext = 5 T 
perpendicular to ?-ray. The distributions P ( A )  from the upper and P(q)  from the 
lower spectrum are shown to the right. 

Table 2. Results for the QC phases from the zero-field spectra a t  4.2 K. Units for 
Is, U I ,  (A),  and U A  are mm s-l and errors about f0.005 mm s-' .  

Sample IS .I (A) UA (A)  /.A 

i-A15.6Sie(MnFe) 0.353 ~ 0 . 0 0  0.430 0.244 1.76 
i-All.8 Si,(CrFe) 0.346 0.052 0.477 0.183 2.61 
LA14 (MnFe) 0.351 0.078 0.422 0.132 3.19 
T-A4 (MnFe) 0.337 ~ 0 . 0 0  0.357 0.215 0.175 



EFG proper t i e s  of 57Fe i n  Al-Si-Mn 642 1 

Table 3. Results for the Q C  phases from the in-field spectra a t  4.2 K. Units for Is, 
U I ,  (e*) and uqf are mm s-’ and errors about f0.005 mm s-l; units for p f  are %. 

P 
i? 
5 

+ - CT 

~ 

i-Als,sSi,(MnFe) 0.353 0.066 0.397 

i-A14.8 Si,( CrFe) 0.347 0.040 0.487 

i-A14 (MnFe) 0.351 0.055 0.412 

T - A I ~  (MnFe) 0.323 0.130 0.358 

-0.402 

-0.493 

-0.422 

-0.298 

1 1 1 1 1 1 1 1  

!W -. ..-- .i 

I I I I I I I I  

0.136 2.92 
0.140 2.87 
0.196 2.48 
0.167 2.95 
0.150 2.74 
0.157 2.69 
0.188 3.03 
0.108 2.75 

29.7 
70.3 
39.1 
60.9 
45.2 
54.8 
50.2 
49.8 

The zero- and in-field ME spectra for the crystalline phases are given in figure 6 
for the cubic phase, figure 7 for the hexagonal phase and figure 8 for the orthorhombic 
phase. The hexagonal phase has been studied at  T = 110 K (zero-field) and at  122 K 
(in-field) in order to avoid any effect of the magnetic transition at  lower tempera- 
ture [47]. Results are given in table 4 for these three compounds, as obtained using 
the Blaes e2 a1 algorithm for the in-field spectra. 

V e l o c i t y  ( m m  S- ’ I  

Figure 6. ME spectra for the cubic phase @-A116Si3(MnFe)r a t  T = 4.2 K i n  (upper) 
zero field and (lower) a field of Bext = 5 T parallel to the y-ray. 

The zero-field ME spectrum for the cubic phase cY-Al,,Si,(MnFe), gave ambiguous 
results [31] for the Fe-substitution in the two Mn sites with two different possible 
relative areas, either in ratio of 3:l  or 2:l.  Since the two Mn sites a.re in the ratio 
of 1:1, there is certainly preferred site substitution of Fe. The in-field results for this 
compound have been used to resolve this ambiguity. The results are given in table 4. 

The hexagonal ,8-A19Si(MnFe), spectra shown in figure 7 (upper) were taken above 
the known magnetic phase transition at  80 K [47]. The upper zero-field spectrum has 
been taken in standard transmission geometry to show the effect of texture common 
to hexagonal systems. For the other spectra, this sample has been studied in magic 
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Figure 7. ME spectra for the hexagonal phase &AlgSi(MnFe)3: (a) in the param- 
agnetic state a t  (upper) T = 110 K, zero field, and (lower) T = 122 K, in an external 
field of B,,t = 5 T perpendicular to the y-ray and (b) in the magnetic state at 
T = 4.2 K, in (upper) zero field, and (lower) external field Bext = 5 T perpendicular 
to the y-ray. 
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Figure 8. ME spectra for the orthorhombic phase o-Als(MnFe) at  T = 4.2 K in 
(upper) zero field and (lower) an external field of B,,t = 4 T perpendicular to the 
y-ray. 

angle geometry [56] both in zero and in magnetic field in order to avoid these problems. 
The in-field spectrum (external field Bext = 5 T, perpendicular to  y-ray) yielded an 
internal hyperfine field of Binl = 4.71 T, and a quadrupole effect of p = -0.44 mm s-l 
with q = 0.88 as evaluated with the Blaes et a1 algorithm (Bint  fixed in space; 5, 
oriented randomly). In figure 7 (lower) we have shown spectra at 4.2 K in zero field 
(upper) and for Bext = 5 T (perpendicular to y-ray direction; lower). These have 
been evaluated using two different algorithms. For the in-field spectrum the Blaes e t  
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a1 routine was used as in the above. We find Bint = 4.97 T, very close to  the value 
of the external field, and q = -0.462 mm s-l with 71 = 0.79, in good agreement with 
the results above at  T = 122 K. For the zero-field spectrum, this procedure did not 
yield adequate results. It was found that assuming a fixed orientation of the hyperfine 
field B,, within the EFG axis yielded better results. In addition, a 25% non-magnetic 
contribution with identical A = l q l d m  but with B,, = 0 was found. For the 
magnetic part, the angle between B,, and v,, was found to be 90' (isotropic B,, and 
V,, but with a fixed relative angle), q = -0.38 mm s-', and 17 = 0.3. This value of 
71 is probably less reliable than that from the in-field spectrum at T = 122 K ,  Fig 7 
(upper). The zero- field spectrum yielded B h f  = 2.3 T for the magnetic part. 

Table 4. Results for the crystalline phases from the in-field spectra. Units for Is 
and q are mm s-l and errors about f0.05 mm s-l; units for area are %. Isomer 
shift Is is at 4.2 K ,  referenced to BCC Fe at room temperature. 

Sample Area Is P D 

a-Al16 Si3 (MnFe)a 
site 1 82 0.32 -0.30 0.6 
site 2 12 0.44 0.27 0.6 
site 3 6 0.55 0 .5  - 

@-A19 Si( MnFe)3 - 0.358 -0.460 0.8 
o-Al6 (MnFe) - 0.351 +0.281 0.4 

In table 4 we give the results for the orthorhombic phase as well; a value 71 = 
0.44 & 0.02 has been found by fitting with the Blaes e2 a1 routine. This is similar to 
the value of 0.4, which we have published earlier [31]. 

4. Discussion 

The i-QC samples unavoidably contain some FCC Al, and it is also known that A1 can 
contain considerable amounts of Mn [57] and Fe [58] in metastable solid solution. The 
composition of the icosahedral phase was accurately determined by referring to  neutron 
diffraction results [59]. This results in a composition of ~ ~ , , , ~ ~ o , 0 6 ( M n o , , 2 ~ e o , 2 ~ )  
for the sample i-Al,,,Si,(MnFe), and a composition of ~ ~ 4 , ~ ~ i o , 0 6 ( ~ r o , 5 ~ e o , 5 ) l  for 
the sample i-A14,8Sic(CrFe). This FCC A1 seems to  be the cause of the small excess 
intensity at low (but negative) values of q observable in the distributions P ( q )  for the 
i-QC samples, figures 2 (lower) and 3 (lower). The compositions of the quasi-crystalline 
phases of the other two samples i-Al,(MnFe) and T-A14(MnFe) are not known, but 
should be very close to the nominal compositions, since no other residual phases were 
detected in these samples. (It is known that the icosahedral structure has a small but 
definite stoichiometry range between A14,5Sio,06Mnl and A14,1Sio,06Mnl [26].) The 
distributions P(q)  in figures 4 (lower) and 5 (lower) do not show any low q excess 
intensity, as was the case for the two i-QC samples. The nominal composition of the 
cubic CY phase (table 1) is close to Al,,Mn, while the ideal end-member is All,Mn, [19] 
and there is indeed some FCC A1 phase present as well in this sample, with Mn and 
Fe in solid solution. We have found three quadrupole doublets at  T = 4.2 K in the 
zero-field spectrum [31], where the small additional spectrum (see figure 6 (upper) and 
table 4) given as site 3 probably represents the additional phase. In order to  evaluate 
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the in-field spectrum (figure 6 (lower)): we have fixed the value of the quadrupole 
splitting q,  the isomer shift I ,  and the relative depths to  the values given by the 
zero-field spectrum, and then checked for the sign of the different values of q,  and the 
value of the asymmetry parameter 77. The choice q < 0 for site 1, and q > 0 for site 2 
have thus been determined. The choice for site 3 was not significant. 

The zero-field ME spectra of the three &C phases yield distributions P ( A )  that  
could be represented by two different values A, and A2, as has been proposed by 
Swartzendruber e t  a1 [8]. Dunlap e t  a1 [30] have used such two-site evaluations for 
zero-field spectra and have used these results to  conclude that there is preferential 
site substitution of Fe in icosahedral AI-Mn alloys. Similar results for the decagonal 
QC phases have been reported on by Koopmans [34] and by Gupta [33]. If this type 
of model were correct, we would expect a bimodal P ( q )  with two different maxima, 
but without the almost symmetrical form that we have obtained (figures 2, 3, 4 and 
5). There would also not be any reason for the sign of V,, to  be different at the two 
different sites. In fact, if we fit the zero-field spectra with two quadrupole doublets, 
the resulting values of A, and A2 are not a t  all consistent with the values (y+) and 
( q - )  as determined from the in-field spectra. It seems clear from our measured P(y) 
that  in fact the Czjzek shell model or GIM form is a much better starting point to 
understand these spectra. In this picture, we look for an asymmetry in area between 
the positive and negative parts of P ( y )  to  determine the dominating EFG sign. 

* 
-0.4 A0 

I I I 
0.2 0.3 0.4 

ir i m m  s - ’ )  

Figure 9. The comparison of the EFG effect q = $eQVzz and the isomer shift Is at 
T = 4.2 K for the crystalline phases with the majority part of the P(q)  distribution 
for the QC phases: (0) i-AIs,e,Si,(MnFe); (0) i-Alh.sSi,(CrFe); (A) i-Alr(MnFe); 
(A) T-AlI(MnFe); (*) c~-AlisSi3(MnFe)r, two sites; ( 7 )  P-AlgSi(MnFe)s; ( 0 )  o- 
A16 (MnFe). 

We then compare this majority EFG sign and magnitude, and the isomer shift to  
the known results for the crystalline phases. First we notice from table 2 that  the 
majority sign for the icosahedral QC phases is negative while that for the decagonal 
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phase is positive (where it should be noted that the T-QC result is actually very close 
to 50:50). In figure 9 we plot the results for q and I ,  for all the phases reported on 
here. In the case of the QC phases, the majority part of P(q) is shown, while for the 
cubic phase, both sites are shown. A certain similarity is found between the results 
(I,, q)  for the icosahedral QC phases and that of the hexagonal phase. The results for 
the i-QC samples are grouped around the result for the hexagonal phase. The site of 
the cubic phase with a negative EFG shows a smaller isomer shift and a smaller EFG 
effect (in absolute value). The other site shows a positive EFG effect and a much larger 
isomer shift. The orthorhombic phase shows a similar isomer shift, but a positive EFG 
effect. Using these hyperfine properties, we can say that the local environment found 
around the Mn (Fe) sites in the icosahedral QC is closest to that found in the hexagonal 
phase among the crystalline phases studied here. 

Both the Czjzek shell model and the GIM give definite predictions on the ratio of 
average values to the standard deviation. These are given by q*/a,, = f 3 . 0 4 7  and 
(A)/.* = 3.094. From the results of Le CGr e t  a1 [40] (see the appendix) these 
ratios should increase when P ( q )  is dominated by a fixed EFG term. From the results 
given in table 2, we see that the experimental values are smaller than the theoretical 
lower limits, being in the range of about 2-3. For the in-field spectra, we obtain a ratio 
l (qk)/uq,  I in the range of 2.5 to 3, in better agreement with the predictions of the GIM. 
These results have been obtained even despite the fact that we have optimised the 
value of the standard deviation uI of the isomer shift, and have used the experimental 
linewidth given by calibration spectra. It seems most likely however that rI should 
in fact be larger, which would decrease the standard deviations of the EFG effect uA 
and U,* .  In any event, the existence of local order is seen only in the asymmetry in 
area between positive and negative values of q. 

For three different i-QC samples, we have obtained a preponderance of negative 
EFG values. This result must be judged with some caution, however, owing to the 
presence of Fe dissolved in the FCC A1 also present. We estimate (using the measured 
lattice parameters of the FCC part) an upper limit of about 10% of the ME area in the 
i-Al,,,Si,(MnFe) and the i-Al,,8Si,(CrFe) samples is due to this phase. It is known [58] 
that the zero-field spectrum of Fe in FCC A1 consists of a singlet and a doublet. 
Assuming that these contribute to the negative part of P(q) ,  the area asymmetry of 
the quasi-crystal would be somewhat smaller than that which is reported here for the 
sample i-Al5,,Sic( MnFe), but this would not qualitatively change our results since this 
would not be large enough to change the sign of the majority EFG term, even in the 
least favourable case. The FCC A1 contribution for the i-Al,(MnFe) and T-Al,(MnFe) 
samples is not known, but is obviously negligible considering the x-ray diffraction 
results, which did not show any visible lines of this phase, and no excess contribution 
at  low EFG q values was found. The result for the T-QC is however very close to 
equal areas for the positive and negative parts. This seems to show that there is in 
fact more disorder in T-QC structures than in i-QC. This is similar to the neutron 
difraction results for the ternary and binary i-QC structures discussed above: the 
binary i-QC show a shorter coherence length of the icosahedral order. 

It is also a property of the dominating disorder on the spectrum of EFG values that 
the asymmetry parameter 7 is distributed as well. The characteristic property of this 
distribution in the shell model and in the GIM is that R(q = 0) = 0; that is there is zero 
probability of finding a site with cylindrical symmetry. From the known insensitivity 
of 57Fe ME spectra to  the value of q, it is sufficient in these types of QC spectra to set 
q = (q) 21 0.6 as has been demonstrated before [40]. Xu e t  a1 [35] have found that the 
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in-field ME spectra of the decagonal alloy A17(Mno,7Feo,3)2 gave results with > 0. 
This result is due to  the dominating disorder in these quasiperiodic structures, and 
not to  the type of local symmetry of the Fe site, as was concluded by the authors. The 
fivefold or tenfold global symmetry in these quasiperiodic structures does not imply 
that q = 0 since there is no such exact point symmetry for each site, except in the case 
of strictly nearest neighbour interactions only. Henley [60] has analyzed the spherical 
packingj and local environments in Penrose lattices in both two and three dimensions 
(2D, 3D). This would be the most simple of all possible QC structure. Despite this, 
there are 24 distinct types of vertex configurations in 3D. Thus if we only consider 
the most local environment to  calculate the spectrum of EFG values, there are 24 
distinct configurations that  contribute. Considering more distant neighbours would 
greatly increase this number, so that it is reasonable t o  expect that  even with full 
site occupancy on a 3D Penrose lattice, the spectrum of EFG values would probably 
be similar to  that for an amorphous structure of random close packing. This is the 
justification t o  use the GIM as a starting point to analyse our ME spectra for the EFG 
distribution. 

Janot and Dubois [26,61,62] have used contrast variation on the Mn sites to  
determine the atomic decoration of Al-Si-Mn quasi-crystals by neutron diffraction. 
(The samples reported on here are actually from these studies.) This method makes 
no reference to  any specific &C lattice model (except for the Bravais lattice, which is 
taken as a primitive hypercubic in 6D). They find that manganese atoms occupy the 
vertices of Penrose tiles in 3D. These form a well ordered subset with only one type 
of site, but with many different local configurations. The (A1,Si) atoms are located 
on the rhombic faces and on the triad axes of the prolate rhombohedron [63,64]. 
Occupancy of these latter sites is fractional, thus embodying the necessary chemical 
modulation to  allow for stability. It is found that there are only very few complete 
Mackay icosahedra present while most Mn atoms belong to triangular ‘fragments’ 
of this polyhedron, a figure that has certain similarities to the configuration found 
in hexagonal P-Al,SiMn,. There is however much disorder in the structure of this 
system despite the fact that  angular correlations are retained. This disorder is due 
to  the partial site occupation and to  a certain variation in the exact positions of the 
(Al, Si) atoms [63,65]. 

Considering this information on the atomic decoration, it is not surprising that 
the distribution of EFG terms deviates only slightly from the GIM distribution given 
by equation (1) and justified in the appendix on very general grounds. 

5 .  Conclusions 

We have presented results on the distribution of the 57Fe EFG in a series of icosahedral 
and decagonal quasi-crystalline alloys. These have been compared with the EFG mea- 
sured in cubic, hexagonal and orthorhombic Fe-doped Al-Si-Mn alloys. It has been 
shown that  the two sites models used to  demonstrate preferred Fe site substitution in 
such alloys are not confirmed by more detailed calculations of the distribution P(q)  
obtained from in-field ME spectra. The form of P ( p )  was found not to  deviate very 
much from that given by the shell model or Gaussian independent model distribution. 
The major effect of local order is to  change the relative areas of the positive and 
negative parts of the bimodal P(q) .  

There was a correlation found between the sign of the dominating EFG part of 
the P ( p )  for the QC phases and the sign of the EFG for the crystalline phases. This 
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was combined with the different isomer shifts to show the similarity between the 
icosahedral QC and the hexagonal phases. There is less similarity between either of 
the two sites in the cubic phase and the decagonal or icosahedral QC phases. These 
correlations are not related to  the amount of silicon, since the decagonal phase forms 
with less than, and the cubic phase with more than, that for either the icosahedral 
&C or the hexagonal phase. There seems to  be much more disorder in the decagonal 
structure, as evidenced by the fact that there was only very little asymmetry between 
positive and negative values of q in the distribution P ( q ) .  
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Appendix. The shell and Gaussian isotropic models 

Shell model 

The functional form of the joint distribution P(q,q)  for random systems was first 
given by Czjzek et a1 [36] in an isotropic shell model. They show that the numerical 
simultations yield marginal distributions Q ( q )  and R(q) very close to  those calculated 
from P(q ,q )  given in equation (I) ,  in the case where no account is made of finite 
atom size in filling the shell of atoms. When excluded volume effects are included, the 
simulations show different integral areas for positive and negative values of q. This can 
be understood from the following reasoning, where for the sake of argument we take 
positive charged ions. In this case a positive value of q results from a concentration 
of ions along one axis. A negative value of q results from a similar concentration, but 
along a ring. Owing to the finite size of the ions, this latter must be more probable, 
so that we should observe a preponderance of negative q values, which is what Czjzek 
et a1 obtain from simulation. They show that this can be represented to first order in 
the distribution P ( q ,  q) by including the cubic factor 1 + pq3(l - $ ) / a 3 .  Even in the 
presence of excluded volume effects, they report that Q(q = 0) = 0 and R(q = 0) = 0, 
indicating no presence of cubic or axial symmetry. 

Gaussian isotropic model 

We review the Gaussian isotropic model (GIM) previously presented by Le Caer el 
a1 [31]. We consider a local property such as the electric field gradient (EFG), which 
can be represented by a symmetric second-rank tensor V .  The components of V 
can be represented for our purposes by the trace T r ( Y )  and the five real quantities 
q ,  i = 1,.  . . , 5  directly deduced from the irreducible spherical tensor associated with 
V [36,66,67]. These are given by 
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T3 = AV,,  

T4 = &VZ, 

T5 = hV,.,. 

In equations ( A l ) ,  we have not assumed that V is diagonal nor any special relationship 
in magnitudes between V,.. , Vyy and V,, . For the case of an EFG, we can further restrict 
ourselves to  a zero-trace tensor, so that T, = 0. I t  is then convenient t o  define the 
modulus S of the tensor V as 

i J-,.,Y '_ ,Z i = l  

The  Gaussian independent model is based on two necessary and sufficient hypothe- 

( H l )  The  solid under study is isotropic on average: that  is the tensor V is statis- 

ses. The first is given by: 

tically invariant under any orthogonal transformation [36,68] 

V -t V' = CTVC (-43) 

where C is a general real orthogonal matrix. 

the Ti over all possible orientations. These are given by 
We obtain certain conditions on the distribution over the quantities T, by averaging 

(Ti) = 0 

( T q ) = O , i # j  

where S was the modulus of the tensor V .  In other words, the variance-covariance 
matrix A of the random variables '11: is given by 

A = $(S2)15  (A5) 

where I ,  is the unit matrix of order 5. 
The second hypothesis is given by: 

(H2) The  distribution of the various elements qj is multivariate normal. 

This means that  the joint distribution P(T,, . . . T5) must be of product form for 
the different distributions of 7 ,  i = 1 , .  . . , 5  taken individually in order to  satisfy ( H l )  
and (H2) ,  these must be normal (Gaussian) distributions. Then the joint distribution 
P(T, , . .  . , T5) must be of the form 

where a is the standard deviation of the distribution for each of the Ti. The square 
modulus S2 is given by the sum of the squares of five independent random variables 
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with zero mean and all with the same variance U:. This means that the distribution 
for S2/u2 must be given by the chi-square distribution with five degrees of freedom, 
or 

P5(S)  = - l f S 4  -,exp ( -- 5)  3 T U  

This is the same as equation (4) for the distribution of A, P(A) ,  as obtained from 
the Czjzek et  a1 shell model. The numerical parameter expressing the width of the 
distribution U introduced by Czjzek is seen to be given by 

where U given above is the standard deviation of the distribution of the factors Ti. 
Le Caer el a1 [40] have also obtained the expression P ( q ,  q)  given in equation (1). 

This model distribution is thus shown to have a much wider validity than the point 
charge simulations of Czjzek et a1 would at  first indicate. Certain averages over P ( q ,  q )  
are useful in practical applications. The average over only the positive (negative) 
values of q of the marginal distribution Q(q) gives 

where p k  is the area under the positive (negative) part of P ( q ,  q ) .  The average over 
the distribution of the modulus S gives 

where us is the standard deviation of S. The averages over R(q) give: 

(q)  = 0.610 (Al l a )  

U,, = 0.243 (Allb)  

where uq is the standard deviation of q, and this value of ( q )  has been used in exploiting 
the experimental spectra. 

The two hypotheses ( H l )  and (H2) do not depend upon the detailed mathematical 
form of the elements of the tensor V (which is here taken as the E F G  tensor, but could 
also be the tensor of local strains; see [40]). We note that the E F G  distributions 
simulated by Pustowka el a1 [69] for a random distribution of point defects on cubic 
and hexagonal lattices show a great similarity to  the GIM distribution for a high 
concentration of defects (0.3 to  0.5). The same result was obtained analytically by 
Stockmann [70] for a cubic lattice. In this case, the lattice remains perfectly cubic 
with respect to  orientational order. These results show that the observation of the 
GIM distribution does not allow us to conclude that the system studied is describable 
as a random packing of shells with no chemical order. An experimenter who knows 
nothing about the sample under study except that the distribution follows the GIM 
form cannot know if the sample is amorphous or crystalline. At most the conclusion 
that disorder is present in the sample is allowed. 
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